Skip to content

A Python package for seamless SQL Server database management, supporting secure connections, query execution, batch fetching, caching, and result exporting.

License

Notifications You must be signed in to change notification settings

rohit180497/PyDBManager

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

25 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ“Œ PyDBManager - SQL Server Database Manager

Python SQL Server MIT License

Welcome to PyDBManager – a Python package for managing SQL Server connections and queries easily and efficiently! 🌟

This guide will help you:

  • βœ… Install PyDBManager
  • βœ… Set up your .env file for SQL or Windows Authentication
  • βœ… Perform SQL operations using Python
  • βœ… Create tables, insert, update, and bulk load DataFrames
  • βœ… Save query results and use batch fetching

1. Install PyDBManager

Run the following command to install PyDBManager:

pip install pydbmanager

If installation is successful, continue to the next step!


2. Create .env File to Store Database Credentials

To avoid hardcoding credentials, create a .env file in your project directory.

Steps

  1. Create a .env file in your project root.
  2. Add the following credentials (update as needed):
    DB_SERVER=localhost
    DB_DATABASE=your_database_name
    DB_DRIVER=ODBC Driver 17 for SQL Server
    
    # For SQL Authentication
    DB_USERNAME=your_username
    DB_PASSWORD=your_password
    DB_AUTH_MODE=sql
    
    # For Windows Authentication
    # DB_AUTH_MODE=windows
  3. Ensure .env is ignored by Git (Add .env to .gitignore).

3. Verify .env File

Run this script to check if the values are loaded correctly:

import os
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

print("\u2705 Database Configuration Loaded:")
print(f"SERVER: {os.getenv('DB_SERVER')}")
print(f"DATABASE: {os.getenv('DB_DATABASE')}")
print(f"AUTH MODE: {os.getenv('DB_AUTH_MODE')}")
print(f"USERNAME: {os.getenv('DB_USERNAME')}")
print(f"PASSWORD: {'*' * len(os.getenv('DB_PASSWORD')) if os.getenv('DB_PASSWORD') else 'Not Set'}")
print(f"DRIVER: {os.getenv('DB_DRIVER')}")

4. Connect to the Database (SQL or Windows Authentication)

from pydbmanager.connection import DatabaseConnection

# Initialize and test database connection
db = DatabaseConnection()
conn = db.create_connection()

if conn:
    print("\u2705 Connection Successful!")
    db.close_connection()
else:
    print("\u274c Connection Failed!")

5. Perform SQL Operations

πŸ”Ή Query Data as DataFrame

from pydbmanager.operations import DatabaseOperations

db_ops = DatabaseOperations()
df = db_ops.query_data("SELECT * FROM users", batch_size=5)
print(df)

πŸ”Ή Insert a New Record

insert_query = """
INSERT INTO users (name, email, age, gender, phone_number, address, city, country)
VALUES ('John Doe', 'john.doe@example.com', 29, 'Male', '123-456-7890', '123 Elm St', 'New York', 'USA')
"""
db_ops.execute_query(insert_query)

πŸ”Ή Update a Record

update_query = """
UPDATE users SET age = 30 WHERE email = 'john.doe@example.com'
"""
db_ops.execute_query(update_query)

πŸ”Ή Delete a Record

delete_query = """
DELETE FROM users WHERE email = 'john.doe@example.com'
"""
db_ops.execute_query(delete_query)

πŸ”Ή Create Table

create_table_sql = """
IF NOT EXISTS (
    SELECT * FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_NAME = 'users'
)
BEGIN
    CREATE TABLE users (
        id INT IDENTITY(1,1) PRIMARY KEY,
        name VARCHAR(100),
        email VARCHAR(100),
        age INT,
        gender VARCHAR(10),
        phone_number VARCHAR(20),
        address VARCHAR(255),
        city VARCHAR(100),
        country VARCHAR(100)
    );
END
"""
db_ops.create_table(create_table_sql)

πŸ”Ή Insert a DataFrame to SQL

import pandas as pd

# Example DataFrame
df_users = pd.DataFrame([
    {
        'name': 'Jane Smith',
        'email': 'jane.smith@example.com',
        'age': 32,
        'gender': 'Female',
        'phone_number': '555-555-5555',
        'address': '456 Oak Ave',
        'city': 'Chicago',
        'country': 'USA'
    }
])

db_ops.insert_dataframe(df_users, 'users')

πŸ”Ή Update SQL Table with DataFrame

Note: key_columns should include the column(s) used to uniquely identify each row (like id or email). These are used in the SQL WHERE clause to apply updates only to matching rows.

# Assume df_users contains updated user data
# Example update: change age for a known email

df_users_update = pd.DataFrame([
    {
        'email': 'jane.smith@example.com',
        'age': 33  # updated age
    }
])

db_ops.update_table_with_dataframe(df_users_update, 'users', key_columns=['email'])

6. Save Query Results to File

# Save to CSV
results_df.to_csv("output.csv", index=False)
print("\u2705 Data saved to output.csv")

7. Closing the Connection

db_ops.close()
print("\u2705 Database connection closed.")

βœ… Congratulations! πŸŽ‰

You’ve successfully used PyDBManager to:

  • Connect to SQL Server using SQL or Windows authentication
  • Run queries and commands
  • Work with DataFrames and tables
  • Create, update, and insert into SQL Server tables
  • Save data to files and close connections cleanly

Contributing & License

I welcome contributions! Feel free to submit issues and pull requests. πŸ’ͺ

This project is MIT Licensed β€” you are free to modify and distribute it as needed. πŸ†

πŸ”₯ Happy Coding!

About

A Python package for seamless SQL Server database management, supporting secure connections, query execution, batch fetching, caching, and result exporting.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages