Skip to content

A comprehensive and user-friendly web interface for fine-tuning Google's Gemma models on custom datasets without requiring deep ML expertise.

License

Notifications You must be signed in to change notification settings

Taskmaster-1/Gemma-Model-Fine-tuning-UI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🚀 Gemma Model Fine-tuning UI

A comprehensive and user-friendly web interface for fine-tuning Google's Gemma models on custom datasets without requiring deep ML expertise.

Project Banner

🌟 Features

  • 📂 Dataset Management

    • Support for CSV, JSONL, and text files
    • Automated validation and preprocessing
    • Data augmentation options
    • Dataset preview and statistics
  • 🎛️ Hyperparameter Configuration

    • Intuitive UI for parameter adjustment
    • Sensible defaults with explanations
    • Configuration templates for common use cases
    • Parameter validation
  • 📊 Training Visualization

    • Real-time loss curves
    • Evaluation metrics tracking
    • Resource utilization monitoring
    • Example generation during training
  • 💾 Model Export Options

    • Download fine-tuned models in various formats (PyTorch, TensorFlow, GGUF)
    • Direct Hugging Face Hub integration
    • Model compression options
    • Deployment configuration generation
  • ☁️ Cloud Integration (Coming Soon)

    • Google Cloud Storage support
    • Vertex AI training capabilities
    • Distributed training configuration
    • TPU acceleration options

📋 Prerequisites

  • Python 3.8 or higher
  • Access to Gemma models (requires Google AI Studio access)
  • For TPU support: GCP account with TPU access

🔧 Installation

  1. Clone the repository:

    git clone https://github.com/Taskmaster-1/Gemma-Model-Fine-tuning-UI.git
    cd Gemma-Model-Fine-tuning-UI
  2. Create a virtual environment:

    python -m venv venv
    source venv/bin/activate  # On Windows: venv\Scripts\activate
  3. Install dependencies:

    pip install -r requirements.txt
  4. Set up Gemma model access:

    • Generate an API key from Google AI Studio
    • Configure your environment:
      export GOOGLE_API_KEY="your_api_key_here"
      # On Windows: set GOOGLE_API_KEY=your_api_key_here

🚀 Quick Start

  1. Launch the application:

    streamlit run ui/app.py
  2. Open your browser and navigate to http://localhost:8501

  3. Upload your dataset, select a model, configure parameters, and start fine-tuning!

📚 Documentation

For detailed documentation, see the docs directory:

🤝 Contributing

Contributions are welcome! This project is part of Google Summer of Code. See CONTRIBUTING.md for details on how to contribute.

📜 License

This project is licensed under the MIT License - see the LICENSE file for details.

🔗 Related Projects

📞 Contact

For questions or support, please open an issue or contact the author at i.am.vivekyadav5223@gmail.com.

👏 Acknowledgements

  • Google for creating and open-sourcing the Gemma models
  • The Hugging Face team for their transformers library
  • All contributors to this project

About

A comprehensive and user-friendly web interface for fine-tuning Google's Gemma models on custom datasets without requiring deep ML expertise.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published