A comprehensive and user-friendly web interface for fine-tuning Google's Gemma models on custom datasets without requiring deep ML expertise.
-
📂 Dataset Management
- Support for CSV, JSONL, and text files
- Automated validation and preprocessing
- Data augmentation options
- Dataset preview and statistics
-
🎛️ Hyperparameter Configuration
- Intuitive UI for parameter adjustment
- Sensible defaults with explanations
- Configuration templates for common use cases
- Parameter validation
-
📊 Training Visualization
- Real-time loss curves
- Evaluation metrics tracking
- Resource utilization monitoring
- Example generation during training
-
💾 Model Export Options
- Download fine-tuned models in various formats (PyTorch, TensorFlow, GGUF)
- Direct Hugging Face Hub integration
- Model compression options
- Deployment configuration generation
-
☁️ Cloud Integration (Coming Soon)
- Google Cloud Storage support
- Vertex AI training capabilities
- Distributed training configuration
- TPU acceleration options
- Python 3.8 or higher
- Access to Gemma models (requires Google AI Studio access)
- For TPU support: GCP account with TPU access
-
Clone the repository:
git clone https://github.com/Taskmaster-1/Gemma-Model-Fine-tuning-UI.git cd Gemma-Model-Fine-tuning-UI
-
Create a virtual environment:
python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate
-
Install dependencies:
pip install -r requirements.txt
-
Set up Gemma model access:
- Generate an API key from Google AI Studio
- Configure your environment:
export GOOGLE_API_KEY="your_api_key_here" # On Windows: set GOOGLE_API_KEY=your_api_key_here
-
Launch the application:
streamlit run ui/app.py
-
Open your browser and navigate to
http://localhost:8501
-
Upload your dataset, select a model, configure parameters, and start fine-tuning!
For detailed documentation, see the docs directory:
- User Guide - Complete usage instructions
- Developer Guide - How to contribute and extend
- API Reference - API documentation
- Examples - Example use cases and workflows
Contributions are welcome! This project is part of Google Summer of Code. See CONTRIBUTING.md for details on how to contribute.
This project is licensed under the MIT License - see the LICENSE file for details.
- Gemma - Official Gemma repository
- HuggingFace Transformers - Used for model implementation
For questions or support, please open an issue or contact the author at i.am.vivekyadav5223@gmail.com.
- Google for creating and open-sourcing the Gemma models
- The Hugging Face team for their transformers library
- All contributors to this project