|
| 1 | +struct Hamerly <: AbstractKMeansAlg end |
| 2 | + |
| 3 | +function kmeans(alg::Hamerly, design_matrix, k; |
| 4 | + n_threads = Threads.nthreads(), |
| 5 | + k_init = "k-means++", max_iters = 300, |
| 6 | + tol = 1e-6, verbose = true, init = nothing) |
| 7 | + nrow, ncol = size(design_matrix) |
| 8 | + containers = create_containers(alg, k, nrow, ncol, n_threads) |
| 9 | + |
| 10 | + return kmeans!(alg, containers, design_matrix, k, n_threads = n_threads, |
| 11 | + k_init = k_init, max_iters = max_iters, tol = tol, |
| 12 | + verbose = verbose, init = init) |
| 13 | +end |
| 14 | + |
| 15 | +function kmeans!(alg::Hamerly, containers, design_matrix, k; |
| 16 | + n_threads = Threads.nthreads(), |
| 17 | + k_init = "k-means++", max_iters = 300, |
| 18 | + tol = 1e-6, verbose = true, init = nothing) |
| 19 | + nrow, ncol = size(design_matrix) |
| 20 | + centroids = init == nothing ? smart_init(design_matrix, k, n_threads, init=k_init).centroids : deepcopy(init) |
| 21 | + |
| 22 | + @parallelize n_threads ncol chunk_initialize!(alg, containers, centroids, design_matrix) |
| 23 | + |
| 24 | + converged = false |
| 25 | + niters = 1 |
| 26 | + J_previous = 0.0 |
| 27 | + p = containers.p |
| 28 | + |
| 29 | + # Update centroids & labels with closest members until convergence |
| 30 | + while niters <= max_iters |
| 31 | + update_containers!(containers, alg, centroids, n_threads) |
| 32 | + @parallelize n_threads ncol chunk_update_centroids!(centroids, containers, alg, design_matrix) |
| 33 | + collect_containers(alg, containers, n_threads) |
| 34 | + |
| 35 | + J = sum(containers.ub) |
| 36 | + move_centers!(centroids, containers, alg) |
| 37 | + |
| 38 | + r1, r2, pr1, pr2 = double_argmax(p) |
| 39 | + @parallelize n_threads ncol chunk_update_bounds!(containers, r1, r2, pr1, pr2) |
| 40 | + |
| 41 | + if verbose |
| 42 | + # Show progress and terminate if J stopped decreasing. |
| 43 | + println("Iteration $niters: Jclust = $J") |
| 44 | + end |
| 45 | + |
| 46 | + # Check for convergence |
| 47 | + if (niters > 1) & (abs(J - J_previous) < (tol * J)) |
| 48 | + converged = true |
| 49 | + break |
| 50 | + end |
| 51 | + |
| 52 | + J_previous = J |
| 53 | + niters += 1 |
| 54 | + end |
| 55 | + |
| 56 | + @parallelize n_threads ncol sum_of_squares(containers, design_matrix, containers.labels, centroids) |
| 57 | + totalcost = sum(containers.sum_of_squares) |
| 58 | + |
| 59 | + # Terminate algorithm with the assumption that K-means has converged |
| 60 | + if verbose & converged |
| 61 | + println("Successfully terminated with convergence.") |
| 62 | + end |
| 63 | + |
| 64 | + # TODO empty placeholder vectors should be calculated |
| 65 | + # TODO Float64 type definitions is too restrictive, should be relaxed |
| 66 | + # especially during GPU related development |
| 67 | + return KmeansResult(centroids, containers.labels, Float64[], Int[], Float64[], totalcost, niters, converged) |
| 68 | +end |
| 69 | + |
| 70 | +function collect_containers(alg::Hamerly, containers, n_threads) |
| 71 | + if n_threads == 1 |
| 72 | + @inbounds containers.centroids_new[end] .= containers.centroids_new[1] ./ containers.centroids_cnt[1]' |
| 73 | + else |
| 74 | + @inbounds containers.centroids_new[end] .= containers.centroids_new[1] |
| 75 | + @inbounds containers.centroids_cnt[end] .= containers.centroids_cnt[1] |
| 76 | + @inbounds for i in 2:n_threads |
| 77 | + containers.centroids_new[end] .+= containers.centroids_new[i] |
| 78 | + containers.centroids_cnt[end] .+= containers.centroids_cnt[i] |
| 79 | + end |
| 80 | + |
| 81 | + @inbounds containers.centroids_new[end] .= containers.centroids_new[end] ./ containers.centroids_cnt[end]' |
| 82 | + end |
| 83 | +end |
| 84 | + |
| 85 | +function create_containers(alg::Hamerly, k, nrow, ncol, n_threads) |
| 86 | + lng = n_threads + 1 |
| 87 | + centroids_new = Vector{Array{Float64,2}}(undef, lng) |
| 88 | + centroids_cnt = Vector{Vector{Int}}(undef, lng) |
| 89 | + |
| 90 | + for i = 1:lng |
| 91 | + centroids_new[i] = zeros(nrow, k) |
| 92 | + centroids_cnt[i] = zeros(k) |
| 93 | + end |
| 94 | + |
| 95 | + # Upper bound to the closest center |
| 96 | + ub = Vector{Float64}(undef, ncol) |
| 97 | + |
| 98 | + # lower bound to the second closest center |
| 99 | + lb = Vector{Float64}(undef, ncol) |
| 100 | + |
| 101 | + labels = zeros(Int, ncol) |
| 102 | + |
| 103 | + # distance that centroid moved |
| 104 | + p = Vector{Float64}(undef, k) |
| 105 | + |
| 106 | + # distance from the center to the closest other center |
| 107 | + s = Vector{Float64}(undef, k) |
| 108 | + |
| 109 | + # total_sum_calculation |
| 110 | + sum_of_squares = Vector{Float64}(undef, n_threads) |
| 111 | + |
| 112 | + return ( |
| 113 | + centroids_new = centroids_new, |
| 114 | + centroids_cnt = centroids_cnt, |
| 115 | + labels = labels, |
| 116 | + ub = ub, |
| 117 | + lb = lb, |
| 118 | + p = p, |
| 119 | + s = s, |
| 120 | + sum_of_squares = sum_of_squares |
| 121 | + ) |
| 122 | +end |
| 123 | + |
| 124 | +""" |
| 125 | + chunk_initialize!(alg::Hamerly, containers, centroids, design_matrix, r, idx) |
| 126 | +
|
| 127 | +Initial calulation of all bounds and points labeling. |
| 128 | +""" |
| 129 | +function chunk_initialize!(alg::Hamerly, containers, centroids, design_matrix, r, idx) |
| 130 | + centroids_cnt = containers.centroids_cnt[idx] |
| 131 | + centroids_new = containers.centroids_new[idx] |
| 132 | + |
| 133 | + @inbounds for i in r |
| 134 | + label = point_all_centers!(containers, centroids, design_matrix, i) |
| 135 | + centroids_cnt[label] += 1 |
| 136 | + for j in axes(design_matrix, 1) |
| 137 | + centroids_new[j, label] += design_matrix[j, i] |
| 138 | + end |
| 139 | + end |
| 140 | +end |
| 141 | + |
| 142 | +""" |
| 143 | + update_containers!(containers, ::Hamerly, centroids, n_threads) |
| 144 | +
|
| 145 | +Calculates minimum distances from centers to each other. |
| 146 | +""" |
| 147 | +function update_containers!(containers, ::Hamerly, centroids, n_threads) |
| 148 | + s = containers.s |
| 149 | + s .= Inf |
| 150 | + @inbounds for i in axes(centroids, 2) |
| 151 | + for j in i+1:size(centroids, 2) |
| 152 | + d = distance(centroids, centroids, i, j) |
| 153 | + d = 0.25*d |
| 154 | + s[i] = s[i] > d ? d : s[i] |
| 155 | + s[j] = s[j] > d ? d : s[j] |
| 156 | + end |
| 157 | + end |
| 158 | +end |
| 159 | + |
| 160 | +""" |
| 161 | + chunk_update_centroids!(centroids, containers, alg::Hamerly, design_matrix, r, idx) |
| 162 | +
|
| 163 | +Detailed description of this function can be found in the original paper. It iterates through |
| 164 | +all points and tries to skip some calculation using known upper and lower bounds of distances |
| 165 | +from point to centers. If it fails to skip than it fall back to generic `point_all_centers!` function. |
| 166 | +""" |
| 167 | +function chunk_update_centroids!(centroids, containers, alg::Hamerly, design_matrix, r, idx) |
| 168 | + |
| 169 | + # unpack containers for easier manipulations |
| 170 | + centroids_new = containers.centroids_new[idx] |
| 171 | + centroids_cnt = containers.centroids_cnt[idx] |
| 172 | + labels = containers.labels |
| 173 | + s = containers.s |
| 174 | + lb = containers.lb |
| 175 | + ub = containers.ub |
| 176 | + |
| 177 | + @inbounds for i in r |
| 178 | + # m ← max(s(a(i))/2, l(i)) |
| 179 | + m = max(s[labels[i]], lb[i]) |
| 180 | + # first bound test |
| 181 | + if ub[i] > m |
| 182 | + # tighten upper bound |
| 183 | + label = labels[i] |
| 184 | + ub[i] = distance(design_matrix, centroids, i, label) |
| 185 | + # second bound test |
| 186 | + if ub[i] > m |
| 187 | + label_new = point_all_centers!(containers, centroids, design_matrix, i) |
| 188 | + if label != label_new |
| 189 | + labels[i] = label_new |
| 190 | + centroids_cnt[label_new] += 1 |
| 191 | + centroids_cnt[label] -= 1 |
| 192 | + for j in axes(design_matrix, 1) |
| 193 | + centroids_new[j, label_new] += design_matrix[j, i] |
| 194 | + centroids_new[j, label] -= design_matrix[j, i] |
| 195 | + end |
| 196 | + end |
| 197 | + end |
| 198 | + end |
| 199 | + end |
| 200 | +end |
| 201 | + |
| 202 | +""" |
| 203 | + point_all_centers!(containers, centroids, design_matrix, i) |
| 204 | +
|
| 205 | +Calculates new labels and upper and lower bounds for all points. |
| 206 | +""" |
| 207 | +function point_all_centers!(containers, centroids, design_matrix, i) |
| 208 | + ub = containers.ub |
| 209 | + lb = containers.lb |
| 210 | + labels = containers.labels |
| 211 | + |
| 212 | + min_distance = Inf |
| 213 | + min_distance2 = Inf |
| 214 | + label = 1 |
| 215 | + @inbounds for k in axes(centroids, 2) |
| 216 | + dist = distance(design_matrix, centroids, i, k) |
| 217 | + if min_distance > dist |
| 218 | + label = k |
| 219 | + min_distance2 = min_distance |
| 220 | + min_distance = dist |
| 221 | + elseif min_distance2 > dist |
| 222 | + min_distance2 = dist |
| 223 | + end |
| 224 | + end |
| 225 | + |
| 226 | + ub[i] = min_distance |
| 227 | + lb[i] = min_distance2 |
| 228 | + labels[i] = label |
| 229 | + |
| 230 | + return label |
| 231 | +end |
| 232 | + |
| 233 | +""" |
| 234 | + move_centers!(centroids, containers, ::Hamerly) |
| 235 | +
|
| 236 | +Calculates new positions of centers and distance they have moved. Results are stored |
| 237 | +in `centroids` and `p` respectively. |
| 238 | +""" |
| 239 | +function move_centers!(centroids, containers, ::Hamerly) |
| 240 | + centroids_new = containers.centroids_new[end] |
| 241 | + p = containers.p |
| 242 | + |
| 243 | + @inbounds for i in axes(centroids, 2) |
| 244 | + d = 0.0 |
| 245 | + for j in axes(centroids, 1) |
| 246 | + d += (centroids[j, i] - centroids_new[j, i])^2 |
| 247 | + centroids[j, i] = centroids_new[j, i] |
| 248 | + end |
| 249 | + p[i] = d |
| 250 | + end |
| 251 | +end |
| 252 | + |
| 253 | +""" |
| 254 | + chunk_update_bounds!(containers, r1, r2, pr1, pr2, r, idx) |
| 255 | +
|
| 256 | +Updates upper and lower bounds of point distance to the centers, with regard to the centers movement. |
| 257 | +Since bounds are squred distance, `sqrt` is used to make corresponding estimation, unlike |
| 258 | +the original paper, where usual metric is used. |
| 259 | +
|
| 260 | +Using notation from original paper, `u` is upper bound and `a` is `labels`, so |
| 261 | +
|
| 262 | +`u[i] -> u[i] + p[a[i]]` |
| 263 | +
|
| 264 | +then squared distance is |
| 265 | +
|
| 266 | +`u[i]^2 -> (u[i] + p[a[i]])^2 = u[i]^2 + 2 p[a[i]] u[i] + p[a[i]]^2` |
| 267 | +
|
| 268 | +Taking into account that in our noations `p^2 -> p`, `u^2 -> ub` we obtain |
| 269 | +
|
| 270 | +`ub[i] -> ub[i] + 2 sqrt(p[a[i]] ub[i]) + p[a[i]]` |
| 271 | +
|
| 272 | +The same applies to the lower bounds. |
| 273 | +""" |
| 274 | +function chunk_update_bounds!(containers, r1, r2, pr1, pr2, r, idx) |
| 275 | + p = containers.p |
| 276 | + ub = containers.ub |
| 277 | + lb = containers.lb |
| 278 | + labels = containers.labels |
| 279 | + |
| 280 | + @inbounds for i in r |
| 281 | + label = labels[i] |
| 282 | + ub[i] += 2*sqrt(abs(ub[i] * p[label])) + p[label] |
| 283 | + if r1 == label |
| 284 | + lb[i] += pr2 - 2*sqrt(abs(pr2*lb[i])) |
| 285 | + else |
| 286 | + lb[i] += pr1 - 2*sqrt(abs(pr1*lb[i])) |
| 287 | + end |
| 288 | + end |
| 289 | +end |
| 290 | + |
| 291 | +""" |
| 292 | + double_argmax(p) |
| 293 | +
|
| 294 | +Finds maximum and next after maximum arguments. |
| 295 | +""" |
| 296 | +function double_argmax(p) |
| 297 | + r1, r2 = 1, 1 |
| 298 | + d1 = p[1] |
| 299 | + d2 = -1.0 |
| 300 | + for i in 2:length(p) |
| 301 | + if p[i] > d1 |
| 302 | + r2 = r1 |
| 303 | + r1 = i |
| 304 | + d2 = d1 |
| 305 | + d1 = p[i] |
| 306 | + elseif p[i] > d2 |
| 307 | + d2 = p[i] |
| 308 | + r2 = i |
| 309 | + end |
| 310 | + end |
| 311 | + |
| 312 | + r1, r2, d1, d2 |
| 313 | +end |
0 commit comments